# Data Processing Pipeline import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler @pipeline_stage def load_data(): """Load raw data from various sources""" data = pd.read_csv('dataset.csv') return data @pipeline_stage def clean_data(raw_data): """Clean and preprocess the data""" # Remove duplicates and handle missing values cleaned = raw_data.drop_duplicates() cleaned = cleaned.fillna(cleaned.mean()) return cleaned @pipeline_stage def feature_engineering(clean_data): """Extract and create new features""" features = clean_data.copy() features['interaction'] = features['col1'] * features['col2'] return features @pipeline_stage def split_data(features): """Split data into train/test sets""" X = features.drop('target', axis=1) y = features['target'] return train_test_split(X, y, test_size=0.2) @pipeline_stage def scale_features(X_train, X_test): """Normalize feature values""" scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) return X_train_scaled, X_test_scaled @pipeline_stage def train_model(X_train, y_train): """Train the machine learning model""" from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=100) model.fit(X_train, y_train) return model # Execute pipeline if __name__ == "__main__": pipeline = DataPipeline() pipeline.run()
Convert PDF to text
$3,247
0%
try on CPU for estimated 100% savings
Encrypt text
$7,832
0%
try gpt4o for estimated 63% savings
Decrypt text
$5,694
0%
try phi for estimated 31% savings
Analyze text
$1,458
0%
try gemini for estimated 52% savings